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Research Institute for Fundamental Physics, Kyoto University, Kyoto 606, Japan 

Received 24 November 1987 

Abstract. The properties of metastable states at zero temperature are examined numerically 
for the infinite-ranged Ising spin-glass model. It is shown that the energy levels of the 
metastable states behave like a random energy model. Furthermore, it is found that the 
barrier energy between them is an increasing function of the Hamming distance. The result 
is consistent with the prediction that the metastable states have an ultrametric organisation 
in the phase space. 

One of the prominent features of spin glasses is the existence of a large number of 
metastable states which are almost degenerate in free energy and separated from each 
other by huge barriers. The multi-valleyed landscape of the free energy enforces the 
system to the glassy dynamics or the phase transition if any. Therefore it is important 
to study basic characters of the landscape structure for clarifying the mechanism of 
anomalously slow dynamics. 

A typical example having many metastable states is the infinite-ranged Ising spin- 
glass model (the so-called SK model [l]). It is believed that statistical mechanical 
averages (canonical averages) can be calculated by Parisi's replica symmetry breaking 
( RSB) ansatz and, in fact, many of the thermal equilibrium properties of the SK model 
are known (for a recent review see [2]). Furthermore the RSB is interpreted as the 
symmetry breaking into multi-valleyed structure in free energy. Indeed the numerical 
evidences for the interpretation which gives the relation between replica space and 
configurational space have been given by means of Monte Carlo simulation [3] and 
by the TAP free energy analysis [4,5]. 

It seems, however, that very little is known about the detailed properties of 
metastable states of the SK model even at zero temperature. A few years ago MCzard 
er a1 pointed out, from RSB calculation, that the metastable states are organised 
hierarchically [6,7]. However, it is still not so clear how this property reflects on the 
dynamics. In this letter we report, as the first step to reveal the problem, some basic 
results from numerical calculation at zero temperature. First we investigate the energetic 
property of metastable states and show that their energy levels are almost independent 
of each other like the random energy model (REM) [8,9]. Then we take account of 
the statistical mechanical weight effectively and confirm the existence of ultrametric 
structure predicted by MCzard er al. Finally we evaluate the barrier energies between 
metastable states and find that the barrier is a non-decreasing function of the Hamming 
distance. The numerical analyses presented here are performed by using all the 
metastable states in a sample and averaging over samples. 

Here we use the so-called TAP equations (equations of state) [ 101 to identify each 
metastable state. At zero temperature they are reduced to the equations for the stable 
state against one spin flip. Furthermore we set the external field equal to zero. Then 
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the TAP equations and energy E are simply written as 

Si = sgn( 7 Jijsj) ( i = l ,  ..., N )  (1) 

E = -c J. .S.S.  V 1 J  (2) 
ij 

where Si = i l  and { J Q }  are independent random Gaussian variables with zero mean 
and the variance ( N  - l)-’, N being the number of total spins. For each sample (each 
realisation of the set of J v )  we found out all the solutions of (1) by a sequential search 
over half of the possible 2 N  states (if a state { S i }  is a solution, {-Si} is also a solution, 
which we call hereafter the time-reversal state of {Si}). The numbers of samples we 
examined are 1000, 1000, 500 and 300 for N = 12, 16, 20 and 24, respectively. We 
found that the mean number of solutions Ns is proportional to exp(aN)  with a = 
0.201 f 0.002 and the prefactor nearly equal to one, which agrees well with the results 
of Tanaka and Edwards [ 111 and Bray and Moore [ 121. 

First we show the result on the density of metastable states (DOM). We evaluated 
DOM for one energy level p ( E )  and for two energy levels p ( E l ,  E2)  defined by 

where E, denotes the energy of the ath solution of (1) and (. . .), the average over 
{J i j } ,  and the summation runs over all solutions. Figure 1 shows p ( E )  for N = 24. In 
fact, p ( E )  has the scaling form with N as 
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Figure 1. Scaled density of metastable states I(;) for N = 24, where i = ( E  - N E , ) N - ’ / ~  
with E~ = 0.506. The full curve represents the analytical result of [ 111. 
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where ~ ~ = 0 . 5 0  [ll]. The result agrees very well with the analytic calculation [ l l]  
indicated by the full curve in the figure. In order to examine the level correlation we 
observed the second cumulant of DOM and found 

with 6 =2.  This suggests that the energy levels of metastable states are independent 
of each other like the REM [8,9]. 

It is well known that the distribution of statistical mechanical weight W, for the REM: 

has the same property as for the SK model, except that energy is to be seen as the free 
energy of metastable states for the latter [13, 141. An interesting property is that the 
moments of Y = 2 ,  W’, are expressed as a function of the first moment y = ( Y)., alone: 

( Y 2 ) ,  = f(Y + 2Y2) (8) 

( Y3)J =&(3y+7y2+5y3) (9) 

and so on. We expect that these relations hold for general REM provided that DOM is 
well behaved. In figure 2, ( Y2) ,  and ( Y3),  are plotted against y for various p, where 
P is treated as a fictitious parameter. The full curves represent the relations (8) and 
(9). Rather good agreement with the analytic predictions confirms the statistical 
independence between energy levels of the SK model. The existence of these relations 
has also been observed in Kauffman’s model [ 151, in which W, is the normalised size 
of the basin of the attractor. Therefore this feature seems common to randomly 
connected networks. 

We also observed the geometrical distribution of metastable states in the phase 
space by evaluating the overlap function Po(q): 

Y Y 
Figure 2. ( a )  ( Y 2 ) ,  plotted against y = ( Y ) ,  for various p ( 2 s  fl  S 10) and for N = 12 (+), 
16 ( x ) ,  20 (U) and 24 (0). ( b )  ( Y 3 ) ,  plotted against y. The full curves in ( a )  and ( b )  
represent the relations ( 8 )  and (9), respectively. 
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where qab is the overlap between two states, a and b. If the metastable states are 
distributed randomly P, (q )  can be calculated from the binary distribution and in the 
large-N limit it is written as 

with y = 1. In figure 3 we show P,(q)  of the present data scaled by N”‘. It fits well 
to the scaling form described by ( 1  1) with y - 0.37. We can see from the result that 
the metastable states of the model are distributed almost randomly in the phase space 
with reduced degree of freedom, yN,  due to the interactions. 

0 1 2 3 4 5 
N”’q  

Figure 3. Scaled overlap function N-”’P0(9 )  plotted against N ” 2 q  for N = 12 (+), 16 
(x) ,  20 (U) and 24 (0). The full curve represents the scaling function ( 1 1 )  with y = 0.37. 

The results presented above do not conflict with the prediction that the metastable 
states are organised hierarchically (ultrametrically) in the free energy space [6,7], 
because the proper weights (7) considerably reduce the effective number of metastable 
states. To confirm this, we examined the weighted three-state overlap function defined 
by 

p ( q l , q 2 , q 3 ) ~ ( ~  a bc wawbwcs(q,-qbc)s(q1-4,a)s(q,-qa,h)) . (12) 

According to the RSB calculation, two of the three overlaps are always equal and 
another one is equal to or greater than these. This statement naturally leads to the 
hierarchy indexed by the overlaps (ultrametricity) of metastable states (for a review 
of ultrametricity see [ 161). We evaluated the following function using our solutions: 
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where Cl denotes the integral region of q3, q3>max(q,,  q2) (in which time-reversal 
symmetry is taken into account). If the ultrametricity holds (13) should be zero except 
on the line q1 = q2 [17]. In figure 4 we show the contour map of P2(ql, q2) .  In the 
case of a white average ( p  = 0) it is essentially the same as that of random distribution 
as expected from the result presented above. With proper weights ( p  = 5 ) ,  on the other 
hand, non-trivial structure along the line q, = q2 is seen, which suggests the existence 
of non-trivial ultrametricity (here ‘trivial ultrametricity’ means ultrametricity where all 
the states are equidistant from each other and no structure exists). 

In order to understand the structure of the phase space in more detail, we investi- 
gated the relation between the Hamming distance d a b  (in the present case dah= 
N (  1 - q a b ) / 2 )  and energy barrier Eah separating two states a and b defined by 

Eab = min { max E }  
paths along 
a - b  thepath 

where ‘paths a + b’ means that minimisation is taken over all paths from a to b 
connected by one-spin-flip passages. It was claimed that the distance {E&} defines an 
ultrametric space [18]. Although, strictly speaking, {,!?ab} is not a distance (note that 
E,, # 0), it is easily seen by the definition (14) that 

E a b  max(Eac, E h c ) .  (15) 
Thus one can construct a hierarchical tree indexed by { E a b }  [ 161. 

Here we used a method of simulated annealing to evaluate all of Eab (the exact 
evaluation is desperately hard!). Let us explain the basic idea of the method. We 
introduce the one-spin-flip operator 9, which has the function PtS, = - S , .  Then any 
paths from the ath state {SP} to the bth state {Sf} can be described by the product of 
9, which satisfies the relation 

{SP} = Bi,Pi2. . . Si,,{S4} (16) 
where n is the length of a specified path. This product is the target of our simulation. 
As a trial we adopted the commutation of two adjoining operators. The cost is easily 
evaluated because the commutation changes only one transient state along the path. 
We used the heat bath method for the acceptance rule of such trials. Among the 
highest energies on each path realised during annealing, the lowest one was evaluated 
as Eab. Of course n can be varied by considering creation and annihilation of Sisi( = 1). 
However it turned out, from preliminary observations, that the length of the path 
having the lowest barrier is almost always equal to dah or there exist other metastable 
states on the path. Therefore we performed the annealing with n fixed to dah for all 
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Figure 4. Contour map of f , ( q , ,  q 2 )  for N = 24 in the case for p = 0 (left) and p = 5 (right). 
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pairs of metastable states and from the result we constructed the minimal spanning 
tree [16] to obtain {Eab).  

Figure 5 shows an example of the tree for a sample of N = 20. As shown in the 
figure the greater part of metastable states, which is dominated in the REM property, 
is over the lowest time-reversal barrier (indicated by an arrow). Here the time-reversal 
barrier means the one between a state and its time-reversal state. 

-0.8 [ I 
Figure 5. Hierarchical tree indexed by energy barrier for a sample of N = 20, N ,  = 62.  The 
arrow indicates the lowest energy barrier. Metastable states are represented by positions 
where vertical lines terminate. Horizontal lines are drawn at the value of the barrier energy 
between two sheafs suspended under the lines. Two identical sheafs are suspended under 
the lowest time-reversal barrier. 

It is a plausible statement that the further two states are separated, the higher the 
barrier between them is. In order to see this feature we define a function as 

Again we treat /3 in (7) as a fictitious parameter (remember that we discuss the case 
where T = 0 so /3 should be taken to be large). The result from our data with /3 = 5 
is plotted in figure 6. As expected B ( d )  is a non-decreasing function of d and the 
plausible statement above is really correct. Therefore the metastable states have, on 
average, an ultrametric structure with respect to the Hamming distance, which is 
described by the same hierarchical tree as that of the energy barriers. 

In the figure plateau-like behaviour is seen for d b 0.5 N because the lowest time- 
reversal barrier is dominated there. We could not estimate the scaling form of B ( d )  
since the system sizes we studied are rather small. Nevertheless an interesting observa- 
tion is that, in the small-d limit, a finite barrier of the order of unity seems to exist, 
namely 

Bo= lim B ( d ) - 0 . 1 3 .  
d / N - 0  
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Figure 6. B ( d )  defined by (17) plotted against normalised distance d /  N for N = 12 (+), 
16 (x ) ,  20 (0) and 24 (O), for p = 5.  

If Bo is assumed to be a correction term to the asymptotic form of the N dependence 
of the plateau value, we can estimate the form as 

lim B ( d ) - N ” + B ,  (20) 
d / N + 1  

with 7-0.51. This can be compared with the estimation of Mackenzie and Young 
[19], 17 = f ,  although our estimation need not be considered so seriously. 

In summary, we have found that the metastable states of the SK model behave 
energetically like the REM and the distribution in phase space also seems random with 
reduced degree of freedom. When the metastable states are weighted properly, the 
energy barrier is, in the mean, an increasing function of the Hamming distance, which 
suggests the existence of the ultrametric structure in phase space. 

In the very low temperature region where entropy effect is negligible, the behaviour 
of the system can be described by the structure of metastable states in phase space. 
Therefore it is of great interest to consider the relaxation process on the hierarchical 
tree, such as that shown in figure 5 ,  of which analysis is now in progress. 

The author is grateful to Professor H Takayama for invaluable discussions and for a 
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Aid for Scientific Research for the Ministry of Education, Science and Culture of Japan. 
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